bgd.layers.conv2d module
- class bgd.layers.conv2d.Convolutional2D(filter_shape, n_filters, strides=(1, 1), dilations=(1, 1), with_bias=True, copy=False, initializer=<bgd.initializers.GlorotUniformInitializer object>, bias_initializer=<bgd.initializers.ZeroInitializer object>, n_jobs=4)[source]
Bases:
bgd.layers.layer.Layer
- get_parameters()[source]
Retuns a tuple containing the parameters of the layer. If layer is non-learnable, None is returned instead. The tuple can have a size > 1 for convenience. For example, a convolutional neural layer has one array for the filters weights and one array for the biases.
- update_parameters(delta_fragments)[source]
Update parameters: base class has no learnable parameters. Subclasses that are learnable must override this method.
- Parameters
delta_fragments (tuple) – Tuple of NumPy arrays. Each array is a parameter update vector and is used to update parameters using the following formula: params = params - delta_fragment. The tuple can have a size > 1 for convenience. For example, a convolutional neural layer has one array to update the filters weights and one array to update the biases: weights = weights - delta_fragments[0] biases = biases - delta_fragments[1]